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Abstract

This paper presents a new heuristic algorithm based on meta-heuristic Genetic
Algorithm for the 2D Irregular Knapsack problem. In simple terms, the pro-
posed heuristic takes a list of items to be packed and builds a solution, taking
into account the order of items on the list and some geometric characteristics
of the packaged item with the partial solution. Furthermore, we implement
an algorithm to the 2D Irregular Strip Packing problem, based on proposed
heuristics packing, to assist the construction of solutions, such that the par-
tial solution can be compacted during the packing. Additionally, we analysed
the performance of three algorithms to generate the geometric structures called
“No-Fit Polygons” (NFPs), which can be used for the verification of overlap
between items in the solving of packing problems with irregular items. We
performed computational experiments to compare the proposed heuristics with
other heuristics from the literature. The proposed algorithm obtained better
results in many cases, indicating that the Genetic algorithm is a suitable choice
when dealing with packing problems with irregular items.

Keywords: 2D Irregular Packing Problems, Genetic Algorithms, No-Fit
Polygon, Combinatorial Optimization, Computational Geometry, Knapsack,
Strip Packing.

1. Introduction

Cutting & Packing problems are classical problems in the Operations Re-
search field that have a great applicability in many practical problems.

In an informal way, cutting problems relate to the division of larger units
(objects) into smaller units (items), and packing problems relate to the grouping
of smaller units (items) into larger units (objects or containers). In general, the
purpose of these problems is to maximize the use of space in which the items are
contained, avoiding waste of materials (raw materials). Among the problems
that can be modeled as cutting and packing problems are optimization of layouts
in pieces of wood, textiles, paper and sheets of metal, of plastic and glass etc.
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As described by Dyckhoff (1990), both problems have the same logical struc-
ture, which allow them to similar formulations, providing the same resolution
strategies. Therefore, we focus on packing problems.

1.1. Packing problems

Based on the typology of Wäscher et al. (2007), the 2D packing problems
considered in this work can be defined as follows:

Knapsack problem. Given a set I of items, where each item i ∈ I presents
a value v(i) associated, and the set R formed by a single rectangular element
r (with constant height and width, and greater than zero), we seek to find a
subset of I that can be packaged into r such that the sum of the values v(i)
of the items in r is maximized, being satisfied the restrictions of the packing
problems. For the problem considered in this paper, the v(i) function is the
area of the item i.

Strip Packing problem. Given a set I of items and a single rectangular
element r ∈ R of height h, a constant greater than or equal to zero, and width
w, a non-negative variable, each item i ∈ I must be packaged in r in order to
minimize the value of w, being satisfied the restrictions of the packing problems.
In this case, given a solution to the problem, the value of w is the difference
of the largest and lowest x coordinates among the vertices of all items of that
solution.

By itself, the one-dimensional version of many packing problems belong to
the class of NP-hard problems (Garey and Johnson (1979)). The treatment of
these becomes even more complex when we use polygons with holes or irregular
items.

In this work, our interest is solving the Knapsack problem with irregular
items, considering a limited set of rotations θ = {θ1, θ2, . . . , θk},∀ k ∈ N for
each instance I. Each item i ∈ I is represented by a simple polygon, composed
of a list of coordinates of points ((x1, y1), (x2, y2), . . . , (xn, yn)) in the plane
(representing the vertices of the polygon), in which each of its consecutive pairs
(including the pair ((xn, yn), (x1, y1))) represents a directed edge in a counter-
clockwise direction. For the edges of boundary of the polygon, the left side
of these edges represents the inside of the item. For the edges that represent
the boundary of the holes of a item (if any), the left side of these edges rep-
resents the outside of the item. For the case of Strip Packing problem, we use
this same structure. However, the interest in this problem is only to assist the
construction of the Knapsack solutions.

1.2. Literature review

Some of the earliest works to address two-dimensional packing problems with
irregular items were proposed around the 1970s when Adamowicz and Albano
(1976) described a technique for grouping of 2D irregular items in rectangular
containers, using an algorithm based on the geometric structure No-Fit Polygon
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to check the overlap between the items. From this, the literature begins to
exhibit works that focus on geometric aspects of these problems, as well as the
optimisation techniques to develop new approaches for obtaining solutions. An
interesting description of these aspects for solving of positioning problems of
irregular items can be found in Bennell and Oliveira (2008, 2009); Dowsland
and Dowsland (1995).

In the case of packing problems with irregular items addressed in this paper,
the literature presents several strategies for generating solutions. Martins and
Tsuzuki (2010) proposed a new packing approach for 2D irregular items con-
sidering a number of rotations and a single container with fixed dimensions, in
order to minimise the loss of use of the container after the packing. Similarly,
Del Valle et al. (2012) propose a heuristic based on meta-heuristic GRASP for
0-1 Irregular Knapsack problem, and a heuristic for the unrestricted version of
this. Based on the resolution of that problem solved by Del Valle et al. (2012),
Mundim and de Queiroz (2012) presented a hybrid heuristic which combines
GRASP with the heuristic Simulated Annealing to search for better solutions.

For Strip Packing problem, we highlight the works that are based on the
use of meta-heuristics in order to guide the heuristics of packing items in the
building of solutions. Gomes and Oliveira (2006) developed a system based on
linear programming with a local search guided by meta-heuristic Simulated An-
nealing. The works Burke et al. (2006, 2007, 2010) focused on two important
parts of the problem: the development of techniques of verification of overlap
between irregular items, and the development of good packing heuristics, which
are assisted by meta-heuristics Tabu Search and Hill Climbing during the con-
struction of solutions. Some of the better results for this problem are presented
in Leung et al. (2012), where a nonlinear optimization model with a local search
guided by the meta-heuristic Tabu Search was proposed. Featuring quality re-
sults close to the results of Leung et al. (2012), Sato et al. (2012) proposed a
new constructive heuristic, which is directed by the Simulated Annealing. Fi-
nally, Bennell and Song (2010) proposed a new constructive approach using the
heuristic developed by Oliveira et al. (2000).

In relation to other packing problems, Terashima-Maŕın et al. (2010) pre-
sented an approach based on meta-heuristic Genetic Algorithm for creating
hyper-heuristics for the Irregular Bin Packing problem, considering instances
with regular (rectangular shaped) and irregular (convex shaped) items. There
are other works that treat only the variation with regular items of the Bin Pack-
ing problem, like Berkey and Wang (1987), which presented new heuristics to
the problem with the adaptation of different heuristics packing; and Martello
and Vigo (1998), in which was proposed an exact heuristic branch-and-bound.

Despite the singularity of each heuristic, it is important to highlight that all
cited works use efficient structures for verification of overlap between the items
of a packing during the construction of their solutions, being the NFPs used in
most of them.
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1.3. Contributions

There are two main contributions of this work. The first, the implementation
and comparison of three algorithms of the literature for construction of No-Fit
Polygons. The second, the development of a new packing heuristic for the
Irregular Knapsack problem, plus an adaptation of this to the use an algorithm
to Irregular Strip Packing problem.

For the generation of No-Fit Polygons, two different geometric approaches
are used: the first based on basic geometric operations; and the second based on
the theory of the Minkowski sum. We implemented three algorithms to generate
the No-Fit Polygons. The first is based on the orbital method, while others use
different approaches of the Minkowski sum.

With respect to the packing problems, we propose a new heuristic based on
meta-heuristic Genetic Algorithm, generating the solution through a construc-
tive approach: given a list of items to pack, the algorithm takes into account
the initial order of these items and positions them in the container, considering
some of their geometric characteristics with the partial solution. In the con-
text of local search of the algorithm, operators are used to change the order
of items in the list, in order to explore the solution space. In addition to this
heuristic, we extend their algorithm with one that solves the Irregular Strip
Packing problem. In this case, the extended algorithm uses the algorithm of the
Strip Packing problem as a compactor of items of a container when the initial
heuristic finds the full container.

This work is divided as follows: the section 2 presents the investigated tech-
niques for generating No-Fit Polygon, and an experimental evaluation of them;
the section 3 describes a heuristic for the packing problem considered, as well
as its adaptation with the heuristic for solving the Strip Packing problem; the
section 4 presents the results of the proposed heuristics; and, finally, section 5
presents the conclusions about the work and the future works.

2. No-Fit Polygon generators

The No-Fit Polygon (NFP) is a geometric structure that defines the positions
in which two simple polygons can be positioned without any overlap between
them. It is widely used in packing problems with irregular items because is
simple to implement and efficient for the verification of overlap, and also enables
the development of heuristics that can take advantage of these structures in a
packing (Bennell and Oliveira (2008)).

Generated the NFP of the item A to the item B, represented by NFPAB ,
the verification of overlap between the two items is reduced to a problem of
determining whether the reference point of B is contained within NFPAB (an
operation of complexity O(n), where n is the number of edges of the NFPAB ,
which is the complexity of point location problem for a simple polygon). Deter-
mined the location of the point, it is trivial to decide whether there is overlap
between the items: if the point is contained within the respective NFP, there is
overlap. Otherwise, the position generates no overlap between them, so that A
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and B are disjoint (reference point of B outside of NFPAB) or are touching by
the boundary (reference point of B on one of the edges of the NFPAB).

Despite this simplicity, the choice of an algorithm for generating the NFPs
is not a simple task. Since a NFP generation algorithm can use different geo-
metric operations according to the geometric characteristics of item (convexity,
holes, etc.), its complexity may also be different. Therefore, we introduce three
algorithms that build NFPs based on two distinct geometric approaches. In
this case, the aim is to perform an empirical analysis of the implemented NFP
generation techniques.

2.1. Geometric approach: orbital method

Proposed by Mahadevan (1985), the orbital model uses the sliding of the
polygons and elementary trigonometry as follows: given two simple polygons A
and B, a point (usually a vertex) of each of them is selected, being called refer-
ence points; the polygon A is translated within a coordinate space so that your
reference point remain at the origin, and this polygon remains fixed throughout
the process; and the polygon B must be moved around all edges of A, maintain-
ing contact between edges of both polygons (without any overlap), and, while
this is done, trace each edge of the NFP, based on the path taken through the
reference point of B.

The implemented algorithm for this approach of creation of NFPs is proposed
by Burke et al. (2007). The features of this algorithm is its ability to generate
the NFP for any simple polygon, with holes or not. Another important point
refers to the ability to find edges of the NFP called exact slides or simple exact
points, which are regions where, once properly positioned, the base polygons of
the NFP fit precisely, maintaining contact for at least two edges.

2.2. Geometric approach: Minkowski sum

The Minkowski Sum (MS), based on the theory of sets and integral geometry,
is one of the elementary operations of the image processing area, forming part
of the so-called mathematical morphology. More specifically, corresponds to the
dilation operation.

Let A and B be two sets of points in space Rd. The MS of A with B is
defined as (1):

A⊕B = {a+ b | a ∈ A, b ∈ B}, (1)

where a and b are vectors corresponding to each point of A and B, respectively,
and a+ b is the vector sum of a and b.

Since the interest is to use the theory of MS in the process of verifying
overlap between simple polygons, the interpretation for the generation of NFP
from MS is: the MS of the points of A with the symmetric set (−B) which is the
set in each vector of these points (vector starting at the origin point) can move
B so that it overlaps the set A. Note that, regardless of the position of A and
B in the plane, the sets generated by operations A ⊕ (−B) will be congruent1

(in this case, the geometric concept of congruence applies to the sets generated
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using only the translation), and A and Bp will overlap when the result of the
SM contains, necessarily, the point of origin of the plane. This comes from the
fact that if A and Bp overlap, then there exists x ∈ A∩Bp, and to compute the
SM of A and −Bp, will add x and −x.

Transforming the sets A and B in polygons, this operation should be treated
differently, because such objects are formed by infinite points. Thus, Cunninghame-
Green (1989); Ghosh (1991, 1993) showed a way to calculate the MS by taking
into consideration only the edges of the polygons. Similarly, is necessary the
use of the symmetrical set (−B) to obtain the corresponding NFP, which in this
case corresponds to the inversion of the direction of each of its edges (changing
between the start and end points of the edge), but without changing its initial
topological orientation (connection order between the edges). Representatively,
for the polygon

B = (
−→
b1 →

−→
b2 → · · · →

−→
bn),

we have the representation of its symmetrical as:

−B = (
←−
b1 →

←−
b2 → · · · →

←−
bn),

where “→” represents the sequence of the topological order of the edges, and

“
−→
bx” and “

←−
bx” represent the orientation (normal or reverse) of the edge x of B,

considering the direction of the edges of B.

Based on the theory of MS, we implemented two techniques to generate
NFPs from polygons:

Decomposition. Works with the vertices set of the simple polygons. To
generate NFP with this technique, the idea is to decompose simple nonconvex
polygons into simple convex polygons, compute the MS among the pairs of
polygon of the decomposition and unite them: let A and B be two simple
polygons, we obtain the convex polygons A1, . . . , Ak and B1, . . . , Bℓ such that⋃k

i=1 Ai = A and
⋃ℓ

j=1 Bj = B. With these sets, we calculate the MS Sij =
Ai ⊕ −Bj for each pair, obtaining m convex polygons. Finally, the NFPAB is
obtained by the union of these m polygons, i.e., NFPAB = A ⊕ −B =

⋃
ij Sij .

Thus, the time complexity of this method is dependent of the complexity of the
algorithm used for convex decomposition of simple polygons.

Based on this technique, we implemented an algorithm based on method of
MS of the geometric library CGAL (2012), making use of the convex decom-
position proposed by Chazelle and Dobkin (1985), of time complexity O(n2),
where n is the number of vertices of the polygon. The characteristic of the
implemented algorithm is the generation of NFPs only to instances formed by

1Two sets of geometric points are said to be congruent if, and only if one can be transformed
into the other by a combination of translations and/or rotations and/or reflections.
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simple polygons without holes, which is a restriction imposed by the CGAL li-
brary in their algorithm for calculating the MS. Another constraint refers to the
inability to find exact slides and exact points of the NFP, which are eliminated
by the library during the geometric operations of polygons union.

Boundary Addition. Despite being formalized by Ghosh (1991), Cunninghame-
Green (1989) have already presented the using of the ideas of the boundary
addition for the generation of the NFP of convex polygons. The Boundary Ad-
dition (BA) works with the edges of the polygons. For convex polygons, the
technique boils down to obtain the set of edges of the polygons A and −B, and
following the angular order of each, concatenate them to obtain the NFP. For
simple polygons, Ghosh (1991, 1993) show how to compute the MS using its
edges, but requiring a more elaborate set of steps.

In this case, we implemented the algorithm proposed by Bennell and Song
(2008) to calculate the NFP, which works as follows: given the polygons A and
B, take the symmetric (−B) and divide its sequence of edges in convex por-
tions. Following the order of division of these portions, concatenate them with
the edges of the polygon A, according to the angular order, while crosses each
edge of A. Then, detect the edges that forming the NFP boundary, based on
the resulting segments of the concatenation and in the intersections between
them. The algorithm presented by Bennell and Song (2008) has time complex-
ity O(m2n2 logm2n2), where m and n are the number of edges of A and B,
respectively. We emphasize that this algorithm is able to generate the exact
slides and exact points of the NFP, but considers only simple polygons without
hole.

2.3. Results of the NPF generators

We present the results obtained by each NFP generator algorithm, consid-
ering several distinct instances composed by simple polygons without hole, ob-
tained from the ESICUP base (http://paginas.fe.up.pt/∼esicup/ (2013)). Note
that when there are repeated instances (i.e., instances with different names, but
with the same polygons, as blaz1 and shapes2, and shapes0 and shapes1), only
one of these was used in the performing experiments.

All of the experiments conducted throughout this paper have been performed
on a PC with a Xeon 2.4GHz CPU, 8GB RAM, Linux Operating System. The
algorithms have been implemented in C++, with the aid of geometric library
CGAL (2012) for geometric manipulation.

The conducted experiment was done only once. For this, we consider only
distinct items of each instance, and each of them has been rotated by the an-
gles set 0 ◦, 90 ◦, 180 ◦ and 270 ◦, resulting in four distinct polygons. For each
instance, we compute the NFP between all pairs of distinct items (including an
item with itself), using the three algorithms of the previous section. We denote
by Gen1 the proposal of Burke et al. (2006), based on orbital method; by Gen2
the implementation using the geometric library CGAL, based on the MS via de-
composition; and by Gen3 the proposal described by Bennell and Song (2008),
based on MS via boundary addition.
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Table 1: NFPs generator times – original instances.
Name Tot Dstc V. avg NFPs Gen1(sec) Gen2(sec) Gen3(sec)
albano 24 8 7.25 1024 6.92 3.40 2.05
blaz2 20 4 7.50 256 1.44 0.45 0.32
dagli 30 10 6.20 1600 8.45 2.42 1.79

dighe1 16 16 3.88 4096 6.86 1.50 0.59
dighe2 10 10 4.70 1600 3.52 0.90 0.36

fu 12 11 3.55 1936 2.97 0.45 0.24
han 23 20 7.35 6400 66.87 17.72 21.70

jakobs1 25 22 5.45 7744 30.89 5.44 11.82
jakobs2 25 22 5.41 7744 36.48 10.31 10.30

mao 20 9 9.22 1296 19.74 7.35 5.39
marques 24 8 7.13 1024 6.55 3.15 2.16
poly1a 15 15 4.60 3600 8.04 3.16 1.00
poly2b 30 30 4.93 14400 37.76 13.26 4.78
poly3b 45 45 4.93 32400 81.63 29.53 10.28
poly4b 60 60 4.93 57600 143.06 49.86 17.40
poly5b 75 75 4.84 90000 216.37 76.18 26.01
shapes1 43 4 8.75 256 4.45 1.00 4.17
shapes2 28 7 6.29 784 3.17 1.16 0.56
shirts 99 8 6.63 1024 5.44 1.51 1.24
swim 48 10 21.90 1600 218.97 77.40 51.18

trousers 64 17 5.06 4624 12.60 2.96 1.27
Total time 922.20 309.10 174.61

Table 1 shows, for each algorithm, the time spent (in seconds) in the gen-
eration of NFPs, for the respective instance. Each row of this table shows the
following information: the instance name (Name); the total number of poly-
gons (Tot); the number of distinct polygons of the instance (Dstc); the average
number of vertices of distinct items (V. avg); total number of NFPs of distinct
items, given the four rotations used (NFPs); the spent time to generate all NFPs
of distinct items for the orbital method (Gen1); the spent time to generate all
NFPs of distinct items for the MS via decomposition (Gen2); the spent time to
generate all NFPs of distinct items for the MS via boundary addition (Gen3).

From Table 1, we can see a great difference in the execution times of the
techniques of NFP generation. In most cases, Gen3 performs better, becoming,
on average, over 5 times faster than Gen1. However, we emphasize that Gen3
does not work with polygons with holes, which does not rule out the possibility
of using Gen1 in problems with polygons that type. For Gen2, there are three
cases in which the generation time is less, when compared to the other two
generators, but not enough to justify its use, view its characteristic of neither
working with polygons with hole nor generate the exact slides and exact points.

Although the results obtained by Gen3 generally have the lowest runtime,
there is a point that we should highlight. From the results obtained, it is clear
that the cost of NFP generation grows with increasing number of vertices of a
polygon. However, the convexity of a polygon is also crucial that spent time,
as may be seen by comparing dighe2 and dagli instances, in which dagli has a
greater amount of nonconvex polygons.

To analyze the impact of non-convexity in the creation of NFPs by algo-
rithms, we apply a change to the items in these same instances: for each item i
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of an instance, add m reflexes vertices, so that i carry one simple polygon, but
with m additional nonconvex vertices. The addition of a reflex vertex r is made
in the median position of the edge formed by the pair of consecutive vertices v
and v+1 of the item i, to a perpendicular distance p of this edge (the value of p
is 15% of the lower edge of i, and is updated at each complete cycle of vertices
added to i); if the vertex r result in a non-simple polygon, another reflex vertex
was calculated, considering the next edge. After the addition of vertices, the
NFPs between all pairs of the new items were generated in a similar way to the
previous experiment. We consider the value of m being 1, 2, 5, 10 and 15. The
results for this change are presented in Tables 2 (for Gen1), 3 (for Gen2) and 4
(for Gen3).

Comparing the results of Table 1 with Tables 2, 3 and 4, we note that the
non-convexity of the items contributes to the execution time of the generators.
For a better analysis, Figure 1 shows the average execution time of these ones,
for each case. We can observe that with the addition of up to 5 reflexes vertices,
the behaviour of generators is similar to running with the original instances.
From this point we have a reversal, so that Gen2 executes faster. For the case
in which are added 15 reflexes vertices, its final execution time is significantly
lower if compared to the two other generators. Nevertheless, we must take into
account the inability of Gen2 to generate some important characteristics of the
NFP and, therefore, it can greatly reduce the time spent generating when items
become more complex. Finally, considering Gen1 and Gen3, we have observed

Table 2: NFPs generator times – modified instances for Gen1.
Name Amount of reflex vertices added

Plus 1 Plus 2 Plus 5 Plus 10 Plus 15
albano 9.58 13.98 30.41 94.81 240.20
blaz2 1.89 2.71 6.67 18.62 52.22
dagli 11.34 15.00 35.41 110.27 264.50

dighe1 10.64 15.21 37.28 116.51 298.24
dighe2 5.03 6.87 16.16 49.20 123.17

fu 4.59 7.04 20.59 93.99 274.87
han 96.75 130.67 306.16 999.87 2098.88

jakobs1 42.41 58.46 174.75 674.71 1696.38
jakobs2 59.62 88.97 251.54 892.80 2163.74

mao 25.75 31.17 62.18 167.65 416.46
marques 7.99 10.90 23.24 75.30 178.97
poly1a 11.75 16.80 44.69 131.90 337.36
poly2b 53.96 77.90 192.90 593.77 1419.97
poly3b 118.09 171.55 412.45 1260.29 3033.13
poly4b 206.04 294.53 697.14 2147.59 5102.98
poly5b 312.34 443.35 1058.85 3222.42 7706.24
shapes1 6.13 9.51 23.04 69.49 166.88
shapes2 4.30 6.16 14.79 50.28 137.53
shirts 7.76 10.70 23.81 65.08 173.24
swim 257.45 305.16 497.17 921.18 1766.81

trousers 16.97 23.15 53.51 192.71 539.87
Total 1270.40 1739.78 3982.75 11948.42 28191.63
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Table 3: NFPs generator times – modified instances for Gen2.
Name Amount of reflex vertices added

Plus 1 Plus 2 Plus 5 Plus 10 Plus 15
albano 5.04 8.23 18.18 42.61 83.79
blaz2 1.17 1.44 4.19 7.33 14.91
dagli 6.09 7.88 20.02 49.62 95.55

dighe1 7.14 9.15 39.02 122.82 244.27
dighe2 3.79 4.79 14.57 43.56 82.21

fu 2.84 3.60 16.06 47.01 93.27
han 34.96 45.77 103.16 238.18 385.32

jakobs1 18.79 28.58 83.09 219.47 387.54
jakobs2 25.45 33.96 86.81 226.25 448.09

mao 10.89 12.71 25.87 61.13 102.50
marques 5.20 5.77 14.64 35.09 62.02
poly1a 9.56 13.50 39.49 91.81 193.18
poly2b 37.08 53.95 153.27 359.64 765.29
poly3b 77.80 113.84 335.46 817.52 1666.06
poly4b 143.43 201.75 594.43 1408.87 2896.70
poly5b 217.86 308.90 911.27 2199.91 4547.52
shapes1 1.50 2.20 4.78 9.35 17.11
shapes2 2.83 3.46 10.30 21.44 43.60
shirts 3.93 5.78 13.33 31.64 56.30
swim 87.76 95.88 134.30 211.78 275.85

trousers 10.94 13.67 41.90 112.18 220.26
Total 714.04 974.80 2664.14 6357.19 12681.32

Table 4: NFPs generator times – modified instances for Gen3.
Name Amount of reflex vertices added

Plus 1 Plus 2 Plus 5 Plus 10 Plus 15
albano 3.02 4.6 13.58 48.2 178.33
blaz2 0.59 1.01 3.99 12.56 28.83
dagli 3.64 5.84 21.43 81.16 197.84

dighe1 1.49 3.66 19.84 92.29 388.62
dighe2 0.92 1.8 8.75 28.37 92.14

fu 1.22 3.68 12.78 42.13 177.9
han 40.2 65.99 195.1 532.16 1067.92

jakobs1 23.83 44.3 121.14 303.72 830.92
jakobs2 21.75 39.88 131.32 399.69 1151.9

mao 7.8 11.32 29.23 100.48 297.51
marques 4.15 5.76 12.58 33.29 84.8
poly1a 2.41 5.34 23.26 79.02 272.08
poly2b 11 24.25 96.7 342.21 1059.01
poly3b 22.71 49.18 208.7 774.19 2330.11
poly4b 39.81 84.96 356.53 1271.78 3816.9
poly5b 60.15 128.58 538.71 1927.34 6070.92
shapes1 4.82 6.76 15.28 35.24 101.53
shapes2 1.25 2.34 9.43 29.41 82.58
shirts 2.38 4.46 14.66 33.62 87.06
swim 71.38 97.87 234.77 627.17 1385.04

trousers 2.7 8.26 34.16 72.81 242.98
Total 327.22 599.84 2101.95 6866.82 19944.93
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Figure 1: Average execution time of the NFP generators.

that Gen3 has the greatest variation of time after the addition of the new reflexes
vertices, despite its shorter execution time.

3. Packing heuristics

In this section we present the proposed heuristics for the packing problems
considered in this paper, which are based on a constructive approach: build
solutions by adding one item at a time and maintaining the viability of the
solution, i.e., without overlap between items and all items within the container.

3.1. Elementary heuristics

The proposed heuristics have in common some elementary heuristics to gen-
erate solutions. Among them, we have the heuristic of grouping of items, called
“Grouping Heuristic”, and the heuristic of ordering of the packing items vector,
based on meta-heuristic “Genetic Algorithm”, and they are shown below.

3.1.1. Grouping heuristic

Aiming to create a grouping of items that is compact, using geometric prop-
erties of items during construction of a solution is shown as a good alternative,
being considered for jobs with good practical results (Oliveira et al. (2000);
Bennell and Song (2010); Sato et al. (2012)). Following this strand, the Group-
ing Heuristic (GH) makes use of extended search proposed by Adamowicz and
Albano (1976).

11



Ik

a)

b) c)

P2

P1

P2

P1

Figure 2: Representation of extended search considering only two packing points (P1 and P2)
of the item Ik in the partial solution for the analysis of rectangular hull.

In the extended search, given two simple polygons P and Q, and NFPPQ,
the idea is to find a point on the edge of NFPPQ such that when Q is packed
at this point, the rectangular hull covering P and Q has minimum area. Figure
2 presents the steps taken by the extended search to analyze and choose a
grouping of items, considering the respective rectangular hull of the partial
grouping. Given the partial packing and one item in 2 a), the extended search
finds the position in which these items are grouped together and generate the
rectangular hull of minimum area (2 b) and 2 c), respectively). Taking the two
generated grouping and evaluating the area of the respective rectangular hull of
each one, we note that 2 c) generates a smaller rectangular area, representing
the selected group. However, there are cases where the grouping produced by
the extended search is not the rectangular hull of the smaller area.

GH considers that the items to be packed are in a list in some initial order.
The goal is to remove an item from the list and package it in the container,
considering a partial packing D of previously packed items. At each iteration,
GH selects a new item Q and tests, using the extended search, the packing of Q
in D, in each of their rotations. The grouping of the extended with rectangular
hull of the smaller area is then used and passed to the evaluation of a new item.
Note that the order of the list of items to be packed influences in the solution of
the GH. This is the key of the Genetic Algorithm that we implemented, since a
solution is always characterized by the order of the items in the input list.

By itself, the use of GH only based on greedy choices of the extended search
can lead to the generation of a final grouping not compact. Figure 3 depicts
a case where this happens, in which the instance shown in 3 a) would not be
grouped in order to obtain the best grouping, whatever the order considered by

12



A

a)

c)b)

C

B

B

C

A

B

C

A

Figure 3: Instance in which the optimal solution can not be generated by GH. a) instance
formed by the items A, B and C, and rotations are not allowed; b) initial packing likely made
by the Grouping Heuristic; c) optimum packing (better utilization).

GH.
Therefore, we apply two variations in the extended search. Instead of using

the positions on the edges of the NFP that the extended search analyzes to find
the grouping with rectangular hull of minimum area, we created a new set of test
positions of two different ways: the first, called Discretized Search, choose the
position of the next item based on a set of test points distributed at equidistant
spaces on the edge of their NFP; the second, called Random Search, choose
the position of the next item based on a random set of test points on the edge
of their NFP. As these forms of grouping items are extensions of the extended
search, the evaluation of the position of the item to be packed to consider each
point of the test set can be done using both the area of the rectangular hull
(similar to the evaluation of the extended search) as the area of the convex hull
obtained with the partial solution, providing new possibilities for the packing of
an item. Figure 4 shows an example of a set of test points, for each implemented
variation.

During the packing of an item Q in a partial solution D, choosing groups
which generate shorter container width may be more interesting to more com-
pact grouping, but with greater width, since, for example, the best alternative
for Strip Packing problem is to build a solution that uses the smallest width
of the container. Therefore, to decide at what point package Q in D, we use a
selection criterion based on a loss parameter α as follows: let the area utiliza-
tion of any grouping be the ratio of the area of the items in D plus Q over the
area of the hull (rectangular or convex) of the grouping of D with Q. Based
on this utilization, consider the positions analyzed by the extended search (or
any of its variations); let AR be the utilization when packing Q at the point
that minimizes the area of the hull with D; and let AC be the utilization when

13



a)

B

D

C

B

D

C

A

b) c)

B

D

C

Test points

Figure 4: Variation in the extended search, where: a) A is the next item to be grouped
together to the partial solution (items B,C and D), and NFP between them; b) set of test
points for Discretized Search; c) set of test points for Random Search.

packing Q at the point that minimizes the width of the resulting packing with
D, considering the same type of hull. Thus, if

AR −AC < α, (2)

will be given preference to the second packing, even if their utilization is less.
An example is shown in Figure 5, in which the values of utilization of the groups
of Figure 5 a) and 5 b), showed in 5 c), will be used by Equation 2.

Finally, the Algorithm 1 summarizes the steps taken by the GH to perform
the grouping of the items. A point to note this heuristic is with respect to the
Packing method, which uses the structure of NFPs to verify feasible points
of grouping, considering the partial solution. In this method, the NFP used in
such searches is not recalculated by any of the algorithms described in section
2, every time that a new item is packed, but was used the union of NFPs of
individual items of the partial solution, for reasons of efficiency. Therefore,
the generation of all edges of the resulting NFP (boundary edges, exact sliding
and exact points, viewed in section 2) will also be dependent on the method of
joining the individual polygons.

3.1.2. Genetic Algorithm

The Genetic Algorithm (GA), proposed by Holland (1992), is a meta-heuristic
of stochastic search based on evolutionary computing that mimics the process
of natural evolution and is widely used as an optimization method for difficult
problems.
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a) b)

c)

AR
AC

AR - AC

0%

100%
AP

Figure 5: Test of grouping according to the utilization and width of the solution; a) packing
with better utilization AP; b) packing with shorter width in the container; c) representation
of the loss factor of the previous utilizations.

For packing problems considered, the idea to use the GA is apply it in order
to get different orders of the list of items to be packed. The modeling of the
structures of GA is described below. packaged

Individuals

An individual is represented by a list of items to be packed in a certain
order. Given this list, only one solution is obtained by using the GH (seção
3.1.1).

The creation of the individuals of the initial population is made in a deter-
ministic way in which the choice of the sequence of items is done by keeping
items of larger area in the initial positions of the list.

The fitness of an individual depends upon the problem to be solved, which
may be the utilization of the container (Knapsack) or the width of the packing
(Strip Packing) found by GH.

Reproduction

The generation of new individuals is entirely based on mutations. The
mutation consists of the application of a single operation on the item list (chro-
mosome) to change it, among which the following operators can be used on the
items (alleles):
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Algorithm 1: GroupHeuristic(i, sol, search t, hull t, α, R)

Input : i: item to be packed;
sol: partial solution of the packing problem;
search t: type of search for item packing;
hull t: type of hull for calculating utilization ;
α: loss parameter for choice the partial solution;
R: container for the partial solution.

Output: The best solution according to the loss parameter α.

Begin

testpoints← GeneratePoints(sol, i, search t);

For all p ∈ testpoints do
aux solution← Packing(p, i, sol, R);
If search t = EXTENDED SEARCH then

EvaluateSolution(aux solution, RetangularHull);

else
EvaluateSolution(aux solution, hull t);

solutions set← solutions set ∪ aux solution;

If is using parameter α then

return ChoiceSolution(solutions set, α);

else

return BestAPSolution(solutions set);

- swap: exchange alleles between two random positions on a chromosome;

- insertion: removes and reinserts an allele randomly chosen positions;

- invertion: reverses the order of alleles within a random interval of the
chromosome.

It is important to note that despite the crossover to be considered very
important to the GA, we do not apply this operation to the individuals because
we do not know a way to group parties considered a good solution, since the
GH works on the partial solution of the packing.

Selection

Initially, the selection of the next generation is made keeping the best
individual in the population. Then, the remaining individuals are chosen by the
method of the tournament: two individuals are randomly chosen, and passes to
the next generation the best individual between them. This process is repeated
until the number of individuals of the next generation is not complete.
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Other structures and operations

In addition to the basic structures of the GA, some data structures were
used to improve the process of building solutions. Among them, we have:

Solution cache. Set of operations on a chromosome, in order to avoid
recalculate all packing after the mutation of the respective individual. Works
as follows: given a chromosome, find the first position of the list of items with
the allele that is in a different position when compared with the list of items
before the mutation. Considering this position as the index i, the packing with
the i − 1 initial items will be kept (since i > 0), since the grouping of these in
the solution is the same.

Calculation of solution of the sequence of mutations. Verification
that avoid recalculate the solution of a chromosome, if the change of a mutation
results in the same packing. In this case, will not be applied the GH, since there
is already the fitness value for this individual.

Restart the population. Reset of the GA with a new population. The
heuristic checks whether the solution stabilized in local minimum, and if there
are no improvements of the fitness of the best individual in a given period of
time, the entire population is reseted, shuffling the order of the items of the list
for each individual, so that new solutions can be produced. It is noteworthy
that the best individuals generated so far is preserved and reinserted into the
newly formed population.

Pseudo-code

Algorithm 2 presents the steps of the Genetic Algorithm heuristic-based
for the packing problems.

3.2. Proposed heuristics

Based on the basic heuristics of the previous section, we propose the packing
heuristics for Knapsack problem.

3.2.1. Basic heuristic

The first full heuristic called basic heuristic is based on the heuristics de-
scribed in section 3.1. Therefore, the ordering of the vector of items to be packed
is made by GA, while the packing of the items in the container is made by GH.
By owning only a single container of fixed width during the packing, the packing
heuristic for the Knapsack problem will discard the next item of the list when
it can not be packed. For Strip Packing, all items are always packed.
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Algorithm 2: GABasedHeuristic(configs)

input : configs: configuration parameters of the GA heuristic-based.
output: The individual with the best fitness of the population, i.e., the

individual with the best packing generated by GH.

Begin

ConfiguraEstruturas(configs);
population ← generate population();
CalculateFitness(population);

While ¬StopCondition(population, CurrentTime()) do

Mutation(population);
CalculateFitness(population);
Selection(population);

If stabilized solution() then
Restart(population);
last improve = CurrentTime();

best individual ← GetBest(population);

Return best individual;

3.2.2. Adapted heuristic

During a packing, items sometimes are discarded due to the bad nesting of
the items within the container. However, if the items of this partial solution
were repacked, but in a different way, such a solution could assume a more
compact layout and more items could be added to the partial solution. On this
basis, we propose an adaptation of the basic heuristic for the Knapsack problem
incorporating in this the basic heuristic to the Strip Packing problem as follows:
taking a specific container, the items contained therein are removed and then
repacked with the use of basic heuristic for the Strip Packing problem. Thus,
the basic heuristic for the Strip Packing problem will act as a compactor of the
partial solution of the Knapsack problem in the container.

The complete algorithm is as follows: given the list of items I to be packaged
and the algorithm for the Strip Packing problem, the basic heuristic for the
Knapsack problem is performed up to fill the container r(j), so that the item
i does not fit him. In this moment, the items of r(j) are repacked by the
algorithm of the Strip Packing problem. Completed this last optimization, a
new packing attempt is made with the item i in r(j): if possible, i is positioned
in its place; otherwise, the item i is discarded. The adapted heuristic to the
Knapsack problem is described by Algorithm 3.

A point to note on the integration of the heuristics for packing problems is
that the time taken for compactation performed by the algorithm of the Strip
Packing problem can adversely affect the final solution if such compactations do
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Algorithm 3: AdaptedHeuristic(I, compactor)

Input : I: items set to be packed;
compactor: algorithm for the irregular Strip Packing problem.

Output: Container R with the packing solution.

Begin

initialize(R) ;
compactedbin← false ;

While I ̸= ∅ do
packed← TryPackingAtBin(R, i) ;
If packed then

compactedbin← false ;
else if ¬compactedbin then

Compact(R, compactor) ;

packed← TryPackingAtBin(R, i);

If packed then
compactedbin← false ;

else
compactedbin← true ;

I ← I \ i ;

Return R

not contribute to improve the grouping in the container. Thus, in such cases,
the spent time in trying to compress a container causes a smaller amount of
new individuals are generated by GA, resulting in a smaller exploration of the
space of solutions. Thus, the use of the compactation in the adapted heuristic
was conditioned to the behavior of the best individual of the GA population,
as follows: for every individual, is generated the packing by the basic heuristic
and stores the fitness of the solution. For the best individual of the population,
storing the values of fitness when used basic and adapted heuristics. But for
the new individuals, the adapted heuristic is executed only when any of these
generate, using the basic heuristic, a fitness that is better than the fitness of the
best individual of the population, considering its value calculated by the basic
heuristic too.

4. Results of the packing heuristics

This section presents the experimental settings and the results of packing
heuristics proposed in this paper.
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Table 5: ESICUP instances parameter settings.

Instance Height(h) Width(w) Allowed rotations(◦) Time(sec)
albano 4900 10122.63 0; 180 1200
blaz2 15 25.20 0; 180 1200
dagli 60 65.60 0; 180 1200
dighe1 100 138.13 0 600
dighe2 100 134.05 0 600
fu 38 34.00 0; 90; 180; 270 600
han 58 43.57 0; 90; 180; 270 1200

jakobs1 40 13.00 0; 90; 180; 270 600
jakobs2 70 28.20 0; 90; 180; 270 600
mao 2550 2058.60 0; 90; 180; 270 1200

marques 104 83.60 0; 90; 180; 270 1200
poly1a 40 13.90 0; 90; 180; 270 1200
poly2b 40 29.99 0; 90; 180; 270 1200
poly3b 40 40.72 0; 90; 180; 270 1200
poly4b 40 51.70 0; 90; 180; 270 1200
poly5b 40 57.71 0; 90; 180; 270 1200
shapes0 40 63.00 0 1200
shapes1 40 59.00 0; 180 1200
shapes2a 15 27.30 0; 180 1200
shirts 40 63.13 0; 180 1200
swim 5752 6568.00 0; 180 1200

trousers 79 245.75 0; 180 1200
aInstance also known in the literature as blaz1.

4.1. Settings

The execution environment and the characteristics of the implementation
for testing the proposed heuristics is the same as described in section 2.3.

We used the same instances of irregular items of the section 2.3, with some
additional settings specified in Table 5. It is noteworthy that the rotations
allowed for each instance were obtained based on the most recent works for the
Strip Packing problem.

Were performed 10 runs for each instance, for the respective algorithm. Im-
portantly, for some instances, the execution time was slightly higher than that
described in Table 5, because we stop the algorithm execution only at the end
of the construction of a solution, if this is still being generated.

The proposed heuristics were adjusted with the following common parame-
ters: verification of overlap of the items based on the technique of NFPs, with
the generation of these structures by the method “Boundary Addition” for sim-
ple polygons – described in section 2 –; loss parameter α equivalent to 5%, with
such a test based on the utilization of the grouping of the items considering
the convex hull; and grouping heuristic, when using the Discretized or Random
Search, using the convex hull of the items to evaluate the utilization of the
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grouping. On these types of searches, we have the following settings: for the
Discretized search, was used a range for the points generation with size refer-
ent to 20% of the perimeter of the respective NFP. This value is halved when
not find, at least, one packing position that is within of the container; for the
Random search, the points set was formed by 20 random points on the outer
boundary of the NFP or 20 random points on each of its edges, which is a choice
of equal probability. Note that, for any search, if there is not a viable position
for a item in the packing, this one is excluded of the solution.

The GA parameters were adjusted using a brute-force search, with a fixed
parameters set. Each of this configuration was run for a time of 1200 seconds.
The most promising parameters of such parametric configuration are described
in Table 6.

Table 6: GA parameter settings.
Parameter Configuration
Population 4

Offspring per individual 1
Ext. Search 90%
Disc. Search 5%
Rand. Search 5%

Swap 33%
Insertion 34%
Invertion 33%

Restart the population 300 seconds
Selection Tournament

Finally, for the adapted heuristic – described in section 3.2.2– , was set a
time of 3 seconds of optimization for the algorithm of the Strip Packing problem.

4.2. Results and discussion

The results of the heuristics for the Knapsack problem are described in Table
7.

In order to verify the performance of both heuristics (basic and adapted), we
also present the best results found in the literature. The information presented
in this table, for each row, are: instance name (Problem instance); maximum
occupancy of the instance with the packing of all items (Max. oc.); utilization
of the best solution (Best Util), average of utilization (Average Util), average
number of packed items (Items) and average time (Time) of the basic heuristic;
and these same informations for the adapted and literature heuristics with the
best results found (except the utilization of the best solution of the literature,
because these results were not found). To facilitate the analysis, we highlight
the values of the better utilization (bold) and the higher average utilization
(underlined), for each instance.

As regards the results of the literature for instances of the ESICUP base,
we found the work of Del Valle et al. (2012), which considers most instances
resolved. For the instances not present in the work them, was used a width of

21



T
a
b
le

7
:
K
n
a
p
sa
ck

re
su

lt
s.

P
ro
b
le
m

M
ax

.
B
as
ic

H
eu
ri
st
ic

A
d
a
p
te
d
H
eu
ri
st
ic

L
it
er
a
tu
re

in
st
an

ce
o
c.
(%

)
B
es
t

A
ve
ra
ge

B
es
t

A
ve
ra
ge

A
ve
ra
g
e

U
ti
l(
%
)

U
ti
l(
%
)

It
em

s
T
im

e(
se
c)

U
ti
l(
%
)

U
ti
l(
%
)

It
em

s
T
im

e(
se
c)

U
ti
l(
%
)

It
em

s
T
im

e(
se
c)

al
b
a
n
o

86
.0
6

8
4
.8
1

83
.8
4

2
1
.8

1
2
0
0
.5

8
4.
2
7

83
.4
8

2
1.
4

12
03
.2

8
0.
3
8

23
97
5.
9
9

b
la
z2

74
.7
4

7
1
.8
3

71
.1
7

1
8
.8

1
2
0
0
.5

7
1.
8
3

70
.9
5

1
8.
7

12
01
.0

*
*

*
d
ag
li

77
.3
1

7
7
.3
1

77
.3
1

3
0
.0

2
6
.2

7
7
.3
1

7
7.
3
1

3
0.
0

1
09
.4

7
5.
8
6

29
11
32
.5
6

d
ig
h
e1

72
.4
0

7
2
.4
0

72
.4
0

1
6
.0

3
1
.6

7
2
.4
0

7
2.
4
0

1
6.
0

18
.0

7
2.
4
0

1
6

10
.8
0

d
ig
h
e2

74
.6
0

7
4
.6
0

74
.6
0

1
0
.0

1
.7

7
4
.6
0

7
4.
6
0

1
0.
0

7
.8

7
4.
6
0

1
0

0
.2
2

fu
83
.8
2

8
3
.8
2

83
.8
2

1
2
.0

1
3
.2

8
3
.8
2

8
3.
8
2

1
2.
0

69
.7

8
3.
8
2

1
2

22
.0
5

h
an

77
.9
5

7
7
.9
5

76
.7
1

2
2
.0

1
1
6
2
.7

7
7.
1
6

76
.3
7

2
1.
7

12
00
.6

*
*

*
ja
ko
b
s1

75
.3
8

7
5
.3
8

75
.3
8

2
5
.0

1
3
.6

7
5
.3
8

7
5.
3
8

2
5.
0

10
.4

7
5.
3
8

2
5

67
.7
9

ja
ko
b
s2

68
.4
4

6
8
.4
4

68
.4
4

2
5
.0

3
8
.8

6
8
.4
4

6
8.
4
4

2
5.
0

32
.9

6
8.
4
4

2
5

6
19
.5
1

m
ao

71
.6
0

7
1
.6
0

71
.6
0

2
0
.0

1
0
.0

7
1
.6
0

7
1.
6
0

2
0.
0

31
.1

7
1.
6
0

2
0

2
23
.3
3

m
ar
q
u
es

8
2.
74

8
2
.7
4

82
.7
4

2
4
.0

5
8
.2

8
2
.7
4

8
2.
7
4

2
4.
0

63
.2

8
2.
7
4

2
4

2
75
.2
7

p
ol
y
1a

73
.7
3

71
.7
5

70
.1
5

1
3
.8

1
2
00
.0

7
3
.7
4

7
0.
3
3

1
3.
9

11
10
.0

*
*

*
p
ol
y
2b

75
.4
0

72
.6
5

7
1.
49

2
7
.0

1
2
0
1.
7

7
3
.8
8

7
2.
0
1

2
7.
8

12
01
.6

*
*

*
p
ol
y
3b

74
.9
0

7
3
.1
2

72
.5
5

4
2
.3

1
2
0
2
.7

7
2.
6
9

72
.2
2

4
2.
0

12
02
.8

*
*

*
p
ol
y
4b

74
.8
0

7
4
.3
4

73
.0
2

5
7
.1

1
2
0
6
.6

7
3.
2
1

73
.0
1

5
6.
8

12
07
.2

*
*

*
p
ol
y
5b

79
.5
3

7
4
.5
1

74
.0
9

6
5
.9

1
2
1
4
.3

7
4.
4
0

73
.7
7

6
5.
5

12
14
.8

*
*

*
sh
ap

es
0

63
.3
3

6
1
.7
5

60
.3
3

4
0
.5

1
2
0
0
.4

6
1.
1
1

59
.7
1

4
0.
0

12
01
.6

6
0.
1
6

41
16
0
3.
7
8

sh
ap

es
1

67
.6
3

6
5
.5
9

63
.9
0

3
9
.5

1
2
0
2.
0

6
5
.5
9

6
3.
5
9

39
.6

1
20
3.
1

64
.2
4

4
1

4
0
94
.1
6

sh
a
p
es
2

7
9.
12

76
.4
3

7
5.
8
7

2
6
.7

1
2
00
.2

7
7
.6
6

7
6.
1
2

2
6.
8

12
01
.0

7
2.
8
9

26
10
66
.0
2

sh
ir
ts

85
.5
4

8
4
.7
1

83
.6
0

9
2
.1

1
2
0
7
.5

8
3.
8
9

83
.2
3

8
9.
1

12
20
.1

7
7.
0
2

96
1
45
2
5.
6
2

sw
im

67
.3
5

6
7
.3
5

66
.9
0

4
7
.3

7
9
3.
1

6
7
.3
5

6
7.
0
8

4
7.
5

8
20
.9

6
4.
2
7

46
4
08
69
.6
4

tr
ou

se
rs

8
8.
63

87
.4
5

8
6.
8
9

5
9
.1

1
2
0
2.
0

8
8
.3
0

8
7.
1
4

5
9.
3

12
06
.4

7
8.
6
6

62
58
44
.8
1

*
N
ot

av
ai
la
b
le
.

22



container that represents the best solution of the literature for the Strip Packing
problem, considering only those with similar parametric settings to the described
in the section 4.1. For the instances poly1a, poly2b, poly3b, poly4b and poly5b
was used a width of the container based on the work of Burke et al. (2006);
for the instances blaz2 and han, their values refer to the obtained from Silveira
(2013). It is noteworthy that we do not use the values obtained in the work of
Mundim and de Queiroz (2012) because, for some instances, the width value is
different of the container width used by Del Valle et al. (2012). Regarding the
execution environment of these experiments, Del Valle et al. (2012) have been
performed on a PC with a Core2 Quad 2.4GHz CPU and 4GB RAM.

Comparing the results obtained by the proposed heuristics, it is seen that
the basic version obtained better results in various aspects. First, it had a
higher average number of results with higher utilization. Another important
point was the time spent, which was lower in most cases, especially for the
instances in which we obtained the optimal solution. This shows that the time
spent in compacting a container by the adapted heuristic is not interesting in
some instances, given a fixed time of the optimization process.

Despite these characteristics, there are cases where to apply the compacta-
tion is interesting. For example, in some experiments in which the instances
solved are more complex and have a greater number of distinct items (such as
a swim, trousers etc.), the compactation performed in the solution that being
constructed by adapted heuristic tends to produce better solutions.

Comparing the results obtained by each of the proposed heuristics with the
results of the literature, we emphasize that we obtained only two inferior results
when compared the average utilization found by heuristic adapted, and only an
inferior result when compared the average utilization found by basic heuristic.
However, note that in these cases, the average time used by both heuristics was
lower due to standards adopted. Analyzing the occupation of the container,
this was higher for some instances, even considering the time limit, that was
significantly lower. For the execution time of the instances in which were found
optimal solutions, some results of the work of Del Valle et al. (2012) show a little
time spent in comparison with other heuristics, but it is not very significant.

Regarding the results in Table 7, we believe that the initial ordering of items
(not ascending order of area) was important to obtaining the results, since the
average number of items is smaller in some problems, when compared with
the results obtained by Del Valle et al. (2012). Another important point is
relative to the generation time of NFPs, which showed an insignificant value
when compared to the total optimization time.

The best packing for each instance of the Knapsack problem is shown in
Figure 6.

5. Conclusions and future works

This paper presented a new heuristic for packing problems with irregular
items, using a constructive approach to generate a feasible solution. The basic
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Figure 6: Results for Irregular Knapsack problem for the instances: a) albano; b) blaz2; c)
dagli; d)dighe1; e) dighe2; f) fu; g) han; h) jakobs1; i) jakobs2; j) mao; k) marques; l) poly1a;
m) poly2b; n) poly3b; o) poly4b; p) poly5b; q) shapes0; r) shapes1; s) shapes2; t) shirts; u)
swim; v) trousers.
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idea was to use the meta-heuristic genetic algorithm to guide the process of con-
structing new solutions to solve the Knapsack problem. We carried out a com-
prehensive computational experiment to analyse the algorithm proposed. The
results showed that this meta-heuristic is able to guide efficiently the heuristics
in the search space, however the use of suitable geometric structures is funda-
mental in the optimisation process to generate good results when considering
irregular items.

It was also proposed a heuristic that makes the integration between the
algorithms of packing problems. We implemented an algorithm for the Strip
Packing problem based on the packing heuristic proposed to act as a compactor
algorithm in order to generate more optimised solutions to the Knapsack prob-
lem. In this case, the proposed heuristic is indicated for cases in which the
instances to be solved are complex. Nevertheless, the flexibility provided by the
new heuristic is interesting in the sense that any heuristic developed to the Strip
Packing problem can be used as a new algorithm to compact solutions.

Regarding to NFP generators, the respective analysis will help other re-
searchers when choosing methods to verify overlap among irregular items for
packing problems.

As future work, we will implement new algorithms to verify overlap, such as
“Phi-Functions” (Chernov et al. (2010)) and other Minkowski sum approaches,
in order to check their performance when using irregular items. Additionally, we
will extend the algorithms of this work to deal with simple polygons with holes,
generalising the proposal to cover all types of simple polygon. When it comes
to heuristics, we propose to compare packing approaches, with and without
using NFPs, with the goal of analyzing the impact of the meta-heuristics with
different packing heuristics.
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