
ArchCollect: A set of Components directed towards
web users’ interaction

Joubert de Castro Lima, Tiago Garcia de Senna Carneiro, Edgar Toshiro Yano, Rodrigo Martins Pagliares, Júlio
César Ferreira and João Bosco Mangueira Sobral.

joubert@facic.fuom.br - FACIC/FUOM
tiago@dpi.inpe.br - Federal University of Ouro Preto

yano@comp.ita.br - IEC/ITA
pagliares@yahoo.com.br - FAS/UNIPAC

juliof@bol.com.br - Federal University of Ouro Preto
bosco@inf.ufsc.br - Federal University of Santa Catarina

Abstract

This paper describes an example of a system focused on
web users’ interactions, called ArchCollect. One JavaScript
component and five Java components gather information coming
only from the user, independing on the web application that will be
monitored and on the web server used to support it. Collecting
information directly from the client improves the portability of this
software and its capacity to deal with many web applications in a
Data Center at the same time, for instance. The ArchCollect
relational model, which is composed by several tables, provides
analyses, regarding factors such as purchases, business results, the
length of time spent to serve each interaction, user, process, service
or product. In this software, data extraction and data analysis are
performed either by personalization mechanisms provided by
internal algorithms, or by any commercial decision-making tools
focused on services, such as, OLAP, Data Mining and Statistics, or
by both.

Keywords: Interaction pattern, web users’ interactions,
components, relational model, decision-making tools.

1. INTRODUCTION

Interaction, in this work, is a general term used for classifying
specific events that were emitted by users in any sort of application.
These events are classified by clicks on elements on a page of an
application. These elements are buttons, links and banners, the last one
used particularly for commerce applications.

In the electronic commerce, the users’ interactions analysis
area has been largely studied [1, 2, 3, 4, 5, 6, 7, 17]. There are many
commercial tools available for this area [8, 9, 10, 11, 12, 13, 14, 15,
16]. All these tools extract the initial data from different kinds of
servers and, as [2] explains, the majority of the commercial tools
typically keep count of hits, rank the most popular pages requested and
tell where the user came from, the length of time each page was viewed
and the page from which the user entered the site and from which the
user exited.

Generally, web usage mining tools or decision-making tools
like the ArchCollect, have four main steps, which are: 1. Collecting
data from servers or from clients or from both. 2.Transforming these
data into a meaningful set of data, which contains the information
necessary to start the diagnostic. 3. Loading this transformed
information into databases or data structures. 4. Extracting this stored
information using tools that have OLAP, Data Mining and Statistic

services, or recommending web pages also based on the stored
information.

The purpose of this article is to show an example of
software directed towards web users’ interactions, which has low
coupling to the monitored application, and also has a general
collecting mechanism. This software enables future experiments,
once the basic ideas have been implemented and tested.

The low coupling is obtained once all the information,
necessary to the ArchCollect, is collected directly from the web
client. The ArchCollect user component, inserted by a parser
software into the HTML or XML code of the existent application,
collects all the necessary information and sends it to the
ArchCollect collecting component. This last component sends this
information to the ArchCollect transforming component, which
filters it and calls the ArchCollect loading component to store this
filtered information into a set of tables called the ArchCollect
relational model. In this relational model we have the final
interaction pattern, ready to be used.

Data extraction and data analysis are performed either by
personalization mechanisms provided by internal algorithms, or by
any commercial decision-making tools focused on services, such as,
OLAP, Data Mining and Statistics, or by both.

The rest of this article is structured as follows: In section 2
the related works are emphasized and compared to the ArchCollect.
Section 3 explains, with details, the ArchCollect components, their
low coupling to the existent application and the ArchCollect
relational model. In section 4, the experiments are characterized.
Section 5 presents the experiments results with one example of the
visualization component. Finally, in section 6, the conclusions are
made and the future works are proposed.

2. RELATED WORK

Some works, such as [1, 2, 3, 4, 5, 6, 7, 17], were proposed
to deal with data extraction under many different perspectives, in
other words, to illustrate analyses offered to administrators (Sites
Modification, Systems Improvement, Business Intelligence) and
offered to the application users (personalization).

Such projects have as mechanism or internal logic, the
possibility of storing data into data structures, typically graphs, or
into relational models consisting of some tables.

Projects such as ECI, WebLogMiner use relational models
and tools with OLAP, Data Mining and Statistics services for
extraction. Projects such as Shahabi use graphs where each node is
a page and each track (graph arrow) corresponds to one link
clicked by the user. The overlapping of the graphs generates the

similarities. Projects such as WUM bring, at each node of the graph, a
set of the users who have passed through the page. Similar paths are
identified by this mechanism.

Table 1 summarizes each work characteristics using the
criteria proposed by [3]. The ArchCollect advantages are: its low
coupling to the monitored application, its general collecting
mechanism, and the correlation of the data stored into the relational
model.

The low coupling is obtained by the mechanism used to
insert the user component code into the web page sent to the client, by
the user component collecting mechanism and by the duplication
component. A parser software that automatizes the process makes the
insertion, and the duplication component separates the information
necessary to the monitored application from the one necessary to the
ArchCollect. Any other mechanisms of the related works cause high
coupling, once they collect their information from servers and create
applications that depend strongly on the analysis mechanism.

The user component was made for collecting properties of a
clicked element on a page. As it works collecting properties, these can

be any sort of properties, in other words, subjective properties, such
as the average age of users, or essential properties, such as the
interaction name. The amount of information is also irrelevant for
this mechanism, once the number of properties is defined by the
monitored application.

For the rest of the quoted works, it is hard to obtain such
flexibility, once the collection is made from many different sources
and any change can bring huge efforts to find new information.

It is important to remember that both the kind and the
number of properties in an element affect directly the quality of the
collected information and, consequently, the capacity of analyses
offered by the ArchCollect, although this is under the responsibility
of the monitored application.

The duplication component collects the length of time that
each requisition of a certain client spends to be answered by the
monitored application servers and by the ArchCollect servers. The
correlation of this data with others collected by the user component
brings extra information about business versus performance.

Project User Coupling (App.
Monitor)

Application
Focus

Data source Usage data Emphasized subjects

WebSifit Multi High (unique
application)

General WEB Server Usage/ Content/ Structure -----

ECI/IBM Multi High (unique
application)

General WEBServer/
User

Usage/ Structure Purchases and business
results

SpeedTracer Multi High (unique
application)

General WEB Server Usage/ Structure ----

WUM Multi High (unique
application)

General WEB Server Usage/ Structure -----

Shahabi Multi Medium (unique
application)

General User Usage/ Structure -----

ArchCollect
Multi Low (multi

application)
General User Usage/

Structure
Purchases, business
results and
performance.

Table 1. Related works and their characteristics.
3. ARCHCOLLECT AND ITS COMPONENTS

The ArchCollect is composed by seven components as
shown in Figure 1. The four phases, already described in the
introduction, are implemented looking for simplicity, for the

software scalability and, finally, for the development of
components capable of supporting loads in the order of 100
million of hits a day. The components internal communication is
made by the TCP protocol, allowing the support of any
application layer protocol.

Figure 1 :Operational environment showing one possible deployment of the ArchCollect architecture.

Duplication Comp.

HTTP Protocol

Client1

User Comp.

Client2

User Comp.

ClientN

User Comp.

Application Server1

Application Server 2

Application ServerN

Transforming
Comp.

Loading
Comp.

Collecting
Comp.

ArchCollect Server1

Transforming
Comp.

Loading
Comp.

Collecting
Comp.

ArchCollect ServerN

Relational DB Dimensional DB

Visualization C.:
Olap, Statistic, Data
Mining.

Personalization Comp.

HTTP Protocol

HTTP Protocol

ArchCollect
Interaction Pattern

Duplication Comp.

3.1. USER COMPONENT

Every element in a web page has its name and its
identifier. The user component defines these two properties or, if
necessary, other properties to give semantic meaning to the
interactions. This last situation can happen in monitored
applications implemented with XML elements.

Besides these page elements properties, called
semantic issues, the user component collects the interaction
complete date and time so that the local time where the
interaction took place can be obtained. For specific elements in
commerce applications, the user component also collects the
price and the quantity related to the product, service or process
that has been acquired. The page where the element has been
clicked is also collected. At last, the client cookies and some
semantic issues are collected, if they exist.

The information is stored in a text element in each
page and sent together with each request in the ArchCollect
interaction pattern showed in Figure 2. The user component is a
set of JavaScript functions that are inserted by a parser software,
implemented as one activity of the duplication component.

3.2. DUPLICATION COMPONENT

The duplication component must be operating on the
same host(s) and port(s) where the original web server should be
running. Thus, all HTTP requests sent to the original application
are firstly received by this component and replicated to the web
server, which should have been moved to another host(s) or
port(s). In other words, the duplication component implements
the Proxy pattern[18].

The first task of this component is listening to the
port(s), already predefined, looking for users’ interactions.
When a request arrives at the duplication component, this sends
an identical request to the original web server and a request
with its first line modified to the ArchCollect server. This line is
modified so that the collecting component is instantiated in the
ArchCollect server. The duplication component can deal with
applications that use both, GET and POST HTTP methods.

Unfortunately, this component will also receive all the
requests from all the users and not only the interactions that are
relevant to the ArchCollect. Because of this, the component first
filters and duplicates only requests related to the application
services, for example, ASP, JSP, CGI, PHP pages.

The duplication component also registers the elapsed
time between the moment when a request arrives and: 1) the
moment when the application response arrives, 2) the moment
when the collecting component response arrives, and 3) the
moment when the HTTP response has just been sent to the user
browser.

Once the duplication component receives the
monitored application server response, it can insert a block of
code at each page (parser software) and it can also create a XML
document from a HTML document (wrapper softwares). After
these tasks, the duplication component sends the response to the
client that initiates the process.

3.3. COLLECTING COMPONENT

The tasks proposed for the collecting component are:
1) Identifying the user, i.e., verifying if the ArchCollect

cookies do exist on the HTTP request.
2) If the ArchCollect persistent cookie does not exist:

a. the collecting component assumes that this request came
from a new user, whose information is sent to the
transforming component and added to the relational
database. The HTTP request header information is sent
to the loading component;

b. the session and persistent cookies are created, and the
session.entranceID field of the interaction pattern is
set to “1”.

3) If the ArchCollect session cookie does not exist, but the
persistent cookie does exist:

a. the collecting component assumes that this request came
from a new session, from a known user, and then the
session cookie is created, and the session.entranceID
field of the interaction pattern is set to “1”.

4) If the ArchCollect session and persistent cookies do exist:
a. the collecting component assumes that this request came

from a known session and known user, and the
session.entranceID field of the interaction pattern is set
to “0”.

5) Sending the interaction pattern to the transforming
component.

6) Sending the current cookies to the duplication component.

3.4. TRANSFORMING COMPONENT

Because user information needs to be stored in a
relational database, a specialized component is required for
some specific activities such as extracting, transforming and
loading data from the collecting and duplication component.
This component has to identify the data about unique users’
sessions so that they can be stored into the ArchCollect
relational model.

The first task is to process the data coming from the
collecting component, storing each line of the buffer into the
relational database using the loading component.

The second task is to identify the session. Using a
simple rule, it is possible to establish the information of the user
entrance in the application: if the field session.id from a line in
the interaction pattern is set to ’1’, then it is that line that
corresponds to the entrance page of the user session.

To find the last interaction of each user session, i.e.,
the point where the user exits the monitored application, it is
necessary to process the whole database, looking for the register
that has the most recent date in the session.

3.5. LOADING COMPONENT

The loading component has the purpose of receiving
the information from the transforming component, and storing
it, according to the ArchCollect architecture final interaction
pattern, into the relational database.

Considered the persistence layer, the loading
component allows the integration between the ArchCollect
logical model and the relational model. The architecture
business layer is separated from the transaction layer resulting in
low coupling among the architecture modules, achieving better
performance, once such component is instantiated on demand
and with better transactional integrity.

Figure 2. ArchCollect interaction pattern.

pattern ::= date“+”page“+”element[“+”product]“+”session”+”semantic
date ::= day“+”month“+”year“+”hour“+”minute“+”second
element ::= name“+”id
product ::= quantity“+”price
session ::= userIP[[“+”sessioncookie]“+”persistentcookie]“+”entranceID
semantic ::= age association”+”rent association”+”layout association”+”etc.

3.6. VISUALIZATION COMPONENT

Once the interactions are correctly stored into the
relational models, it is necessary to define some extraction tools
to answer business questions.

The relational model was translated to a dimensional
model. The solution is based on the separation of the data that is
used for decision-making, called dimensions, from the
operational data, called fact table. This kind of data is stored at
data webhouses.

The data webhouse is responsible for data storage and
management, while the OLAP services, for example, convert the
stored data into useful information for decision-making [19].

 The visualization component can be implemented in
any data webhouse tool and OLAP or Data Mining or Statistic
services off-the-shelf.

3.7. PERSONALIZATION COMPONENT

Web commerce applications deal with anonymous
users who arrive, emit interactions and leave the application.
Important information with grain of granularity in the order of
the users’ interactions is obtained by the components that were
described until now. Also, in order to re-pass these
modifications online to the commerce application user, it was
proposed the personalization component.

The personalization component task is to generate, in
the beginning of its execution, in background and periodically,
the initial profiles. The interaction pattern stored into the
relational model is used to establish the initial profiles. Once this
task is done, the online process begins.

The second task is the profile sophistication, assuming
new profiles and increasing the existing ones. The interaction
pattern illustrated in figure 2 has a subpart called semantic.
Based on this subpart the online profile is sophisticated.

It is not the intent of this article to detail this
component, once the ideas are not implemented and tested yet.
Problems with performance in the second task persist. We based
our ideas in the Yoda [20] project. Once this component is ready
it will require an individual work.

3.8. RELATIONAL MODEL

The relational model is considered the ArchCollect
architecture core, which reflects the ArchCollect architecture
final interaction pattern.

The purpose of this article is to describe an example of
interaction analysis architecture, and no metrics were used to
establish the relational model. We just emphasize general
subjects that all corporations will be interested in. In the future
works a detailed study will be done classifying the set of metrics
that the ArchCollect will adopt.

An example of an ArchCollect relational model is
illustrated in the appendix. This example is used to store all the
tests information.

4. EXPERIMENTS CHARACTERIZATION

The system was analyzed by an experiment composed
by three computers that are interconnected by a hub Ethernet
10/100Mbps. One of the computers executes the benchmark
Microsoft Web Stress Tool that implements many threads, that
continuously, sends POST requisitions on ASP pages – Active
Server Pages of a web application stored in another computer

that executes the IIS server – Microsoft Internet Information
Server 5.0.

The third computer executes all the ArchCollect
architecture components and the JWS server – Java Web Server
2.0 used by the architecture collecting component for servlet
instantiation. Table 2 shows the configuration of each one of the
computers.

COMPUTERS Web Stress Tool IIS ArchCollect
Processor Pentiun II, 350 MHz Pentiun II, 350 MHz Athlon , K7 650

MHz
Memory 128 MB SDRAM 128 MB SDRAM 256 MB SDRAM
Hard Disk IDE,7200 rpm IDE,7200 rpm IDE, 7200 rpm
Network Ethernet 10/100

Mbps
Ethernet 10 Mbps Ethernet 10/100

Mbps
 Operational
System

Windows NT 4.0 Windows 2000
Professional

Windows NT 4.0

Table 2. Computers used in the experiments.
The experiments where made in two scenarios. In the

first scenario, only two computers are connected to the hub and
the Microsoft Web Stress Tool generates HTTP requests directly
to the IIS server with no interference of the ArchCollect
architecture. In the second scenario, the three computers are
used and the Microsoft Web Stress Tool generates HTTP
requests to the ArchCollect architecture server that collects and
analyzes the requests and, in parallel, re-passes them to the
computer that executes the IIS server.

4.1. SERVICE LEVEL DEFINITION AND
PERFORMANCE METRICS CHOICE

The ArchCollect architecture must be able to collect
the information related to an interaction in a finite and shortest
time interval. Every time this interval is exceeded, the
information is rejected and a timeout is raised. The greater it is
this timeout value, the greater it will be the number of
simultaneous users, the greater it will be the number of active
threads and the greater it will be the use of resources as memory
and CPU. The smaller it is this timeout value, the greater it will
be the number of timeouts and the smaller it will be the quantity
of collected information. Therefore, there is a clear relation
between the desired service quality and the computational
performance (internal resources) necessary to reach this quality.
This parameter can be optimized as the system workload
increases or diminishes, but in our experiments it was used the
value of 60 seconds. The performance metrics [21, 22] chosen to
analyze the collected interactions service are: the total response
time observed by the user and the system throughput.

4.2. PARAMETERS THAT INFLUENCE THE
EXPERIMENTS

Many parameters influence the experiments, some of
these parameters are characteristics of the system itself, such as
the quantity of the servers RAM memory or the processor speed
and the transmission speed of the connection between the clients
and the server. Other parameters depend exclusively on the
workload, such as the number of simultaneous users, the number
of new users that arrive at the system per time unit and the think
time. The experiments were made with the purpose of knowing
only the impact of changes in the parameters: number of
simultaneous users and number of new users per time interval.
The values used for these parameters in the experiments were:
number of simultaneous users using the system, which was
equal to 50, 100, 125, 150, 175 and 200; and number of new
users arriving at the system in a time interval of 10 minutes,
which was equal to 150, 200 and 300. The think time was

established as 10 seconds, an average time for an ASP page used
in the experiment to be received by a user in the Internet.

All the experiments were made with a Microsoft Web
Stress Tool, configured to simulate 56 Kbps connections
between the clients and the web server.

4.3. CHARACTERIZATION OF THE WORKLOAD

The workload was characterized by a set of HTTP
requests using the POST method on 10 ASP pages stored into
the IIS server. Each one of the pages was associated to a
different product and each request sent to the IIS server has
informed the amount of this product that was bought. It was
supposed a site where 20% of the users accesses at least, up to
the third page of the site, 30% up to the seventh page of the site
and 50% of the users accesses up to the tenth page. All the pages
had the size of 12885 bytes.

For each one of the proposed scenarios, experiments
were made where the number of simultaneous users had varied
and the rate of new users remained constant, and experiments
where the opposite had occurred, resulting in a total of
2x(6x1+1x3)=18 experiments. Each experiment lasted, on
average, 10 minutes and was repeated 10 times, so that the
results average could be collected. The total time used in the
execution of the experiments was, at least, equal to 30 hours.

5. PRESENTATION AND ANALYSIS OF THE
RESULTS WITH AN EXAMPLE OF ArchCollect

VISUALIZATION COMPONENT

Figure 4 presents some samples of the response time
observed by a web user, when the number of simultaneous users
varies from 50 to 200 users and the rate of new users arriving at
the system remains in 20 users/minute. The ArchCollect
architecture had its best performance when the number of
simultaneous users was equal to 50 users and the response time
was equal to 3,9 seconds. Up to 100 users, the response time
increases linearly as the number of users increases, but from this
limit, the response time seems to have an exponential growth as
the number of users increases.

The IIS server response time remains relatively the
same for all the experiments. This figure also shows that, in the
second scenario, the response time observed by the user
increases in an order of magnitude when compared to the
response time observed in the first scenario. The ArchCollect
architecture has increased 3.2 seconds on the average response
time observed by the user, and at most 15.6. seconds

Figure 5 shows how the service and waiting time of
the monitored application and of the ArchCollect architecture
behave when the number of simultaneous users increases and
the rate of new users arriving at the system remains constant and
equal to 20 users/minute. When the number of simultaneous
users is over 150, it is observed that the waiting time of the
ArchCollect architecture becomes bigger than its service time
and starts to grow quicker, confirming the saturation state of the
architecture.

Figure 6 shows that the throughput observed by the
web user grows linearly as the number of simultaneous users
increases up to a limit of 100 users. Over this value, the system
comes to a saturation state where the ArchCollect throughput
tends to a limit of 7 requisitions answered per second,
approximately 604.800 interactions a day, and the IIS server
throughput continues growing linearly. This discrepancy can be

justified by the fact that the “.asp” pages that compose the
workload do not have any ASP code.

6. CONCLUSIONS AND FURTHER WORKS

This article presented an architecture for collecting and
analyzing users’ interactions. The low coupling to the
application that is going to be monitored enables the
ArchCollect to deal with many web applications at the same
time.

Components with specific functions allowed the
development of a tool that keeps sufficient information to
answer questions about sales, business results and performance
results, for example. We implemented and tested the initial ideas
of this architecture.

All the results of the ArchCollect version 1.0 show
that the software can operate monitoring small sites, once the
throughput is small and the response time increases significantly
when 150 or more simultaneous users access the monitored
application. Version 2.0 can monitor medium or big sites.
Preliminary tests show that the ArchCollect can deal with 350
simultaneous users increasing the throughput with a reasonable
response time.

The work is being extended in many directions. Some
experiments, using different numbers of ArchCollect servers,
must be made to observe the architecture scalability.

The data mining and OLAP services must be coupled
to the statistics visualization, ending the possibility of data
extraction from a unique relational model.

The personalization components are just one path for
the understanding of the collected interactions. Web
recommendation algorithms or communities creation algorithms
will be able to bring a huge contribution for the understanding of
the interactions, and then to provide a more sophisticated user
behavior profile.

Nowadays, only the waiting time and the service time
for each interaction on the ArchCollect servers and on the web
application servers are analyzed. These times show how much it
costs to carry out a certain service or process. A better
architecture internal performance analysis allows knowing
which component, specifically, behaviors as the bottleneck of
the whole architecture.

The ArchCollect implementation may be modified to
support a bigger number of simultaneous users, to decrease its
response time and to increase its throughput so that these values
may be compared to the values presented by the IIS web server.
Two alternatives to obtain this situation are to implement more
efficient strategies in our component algorithms or to attempt to
distribute these components among many hosts connected by a
communication network using the J2EE architecture model.

Another point that can be studied is the adequacy of
the current ArchCollect architecture to the interactive TV
models or telephony models. Information about the target
public, their interactions and these interactions relation to a
service or product, has to be established.

7. References
[1] M.S.Chen, J.S.Park, P.S.Yu, “ Data Mining for Transversal

Patterns in a Web Environment”, Proc. of 16th
International Conference on Distributed Computing
Systems, 1996.

[2] S.Gomory, R.Hoch, J.Lee, M.Poldlaseck, E.Schonberg,
“Ecommerce Intelligence : Measuring, Analyzing, and

Figure 3. Average response time x simultaneous users’.

Reporting on Merchandising
Effectiveness of Online Stores”, IBM
Watson Research Center, 1999.

[3] Jaideep Srivastava, Robert Cooley,
Mukund Deshpande, Pang-Ning Tan,
“Web usage minig : Discovery and
applications of usage patterns from
web data”, SIGKDD, January, 2000.

[4] Myra Spiliopoulou and Lukas C
Faukstich. WUM: A web utlilization
miner, EDBT Workshop WebDB98,
Valencia, Spain, 1998.

[5] Kun-Lung Wu, Philip S Yu, and Allen
Ballman. SpeedTracer: A web usage
mining and analysis tool, IBM Systems
Journal, 37(1), 1998.

[6] Cyros Shahabi, Amir M Zarkesh, Jafar

Adibi, and Vishal Shah. Knowledge
discovery from users’ web-page
navigation, Workshop on Research
Issues in Data Engeneering,
Birmingham, England, 1997.

[7] O.R.Zaiane, M.Xin, J.Han.
Discovering Web Access Patterns
and Trends by Applying OLAP and
Data Mining Technology on Web
Logs, Proc. of Advances in Digital
Libraries Conference, 1998.

[8] Andromedia Inc´s Aria,
http://www.andromedia.com

[9] DoubleClick Inc,
http://www.doubleclick.com

[10] Engage Technologies Inc´s,
http://engagetechnologies.com

[11] IBM Corp´s SurfAid,
http://surfaid.dfw.ibm.com

[12] Marketwave Corp´s Hit List,
http://www.marketwave.com

[13] Media Metrix, http://www.mediametrix.com
[14] net.Genesis´net.Analysis,

http://www.netgenesis.com
[15] NetRating Inc., http://www.netratings.com
[16] Straight UP!, http://www.straightup.com
[17] Kun-Lung Wu, Philip S Yu, and Allen Ballman.

SpeedTracer: A web usage mining and
analysis tool, IBM Systems Journal, 37(1),
1998.

[18] Gamma, E. et.al. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-
Wesley. 1995.

[19] Sakhr Youness, “Professional Data
Warehousing with SQL Server7.0 and OLAP
Services”, 2000.

[20] Cyrus Shahabi, Farnoush Banaei-Kashani, Yi-
Shin Chen, and Dennis McLeod, “Yoda: An
Accurate and Sacalable Web-based
Recommendation System”, In the preceedings
of the Sixth Internacional Conference on Cooperative
Information Systems, Trento, Italy, September 2001.

[21] Menascé, Daniel A. & Almeida, Virgilio A.F., "Capacity
Planning for WEB Performance - Metrics, Models &
Methods", Prentice Hall, PTR, 1998.

[22] Jain, R.. "The Art of Computer Systems Performance
Analysis - Thechniques for Experimental Design,
Measurement, Simulation, and Modeling", John Wiley &
Sons,Inc., 1991

Figure 4. Response, service and waiting time of the monitored application and of the ArchCollect
architecture.

Figure 5. Impact of the ArchCollect on the rate of answered
 requisitions observed by the server.

Appendix

Tabela Chave
ProcessID
Cookie SID
Cookie PID
Product ID
Page ID
Interaction ID
DateID
Quantity
Price
NumInteraction
Session
InteractionTime ID
Semantic things

 Product/Service table
ProductoID
/ServiceID
Name
 SKU
Color
Size
Promotion
Departament
CompanyID
Etc.......

 Page table

Page ID
Size
Color
Description
Category
Etc......

Interaction table

Interaction ID
Interaction type
Description
Etc......

Session table

CookieS ID
Entrance page
Entrance time
Entrance date
Exit page
Exit time
Exit date
Time remained
Referer

Tabela Usuário

CookieP ID
Host
IP
Adress
Protocol
Acept
Agent
ProfileID
Etc.......

Date table

DateID
Year
Month
Day
Hour
Minute
Second

Company table

CompanyID
Name
Address
Tel
Etc......

InteractionTime table

InteractionTime ID
ArchCollect time
Others time
Total time
Wait time Arch
Wait time others
Internal current time

Process table
ProcessID
Name
Function
Description
Etc.

Profile table
ProfileID
ProductID
ServiceID

Figure: An example of ArchCollect relational model.

